Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen Cryptococcus neoformans.

Identifieur interne : 000200 ( Main/Exploration ); précédent : 000199; suivant : 000201

The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen Cryptococcus neoformans.

Auteurs : Yee-Seul So [Corée du Sud] ; Dong-Gi Lee [Corée du Sud] ; Alexander Idnurm [Australie] ; Giuseppe Ianiri [États-Unis] ; Yong-Sun Bahn [Corée du Sud]

Source :

RBID : pubmed:31175227

Descripteurs français

English descriptors

Abstract

The target of rapamycin (TOR) pathway is an evolutionarily conserved signal transduction system that governs a plethora of eukaryotic biological processes, but its role in Cryptococcus neoformans remains elusive. In this study, we investigated the TOR pathway by functionally characterizing two Tor-like kinases, Tor1 and Tlk1, in C. neoformans We successfully deleted TLK1, but not TOR1TLK1 deletion did not result in any evident in vitro phenotypes, suggesting that Tlk1 is dispensable for the growth of C. neoformans We demonstrated that Tor1, but not Tlk1, is essential and the target of rapamycin by constructing and analyzing conditionally regulated strains and sporulation analysis of heterozygous mutants in the diploid strain background. To further analyze the Tor1 function, we constructed constitutive TOR1 overexpression strains. Tor1 negatively regulated thermotolerance and the DNA damage response, which are two important virulence factors of C. neoformansTOR1 overexpression reduced Mpk1 phosphorylation, which is required for cell wall integrity and thermoresistance, and Rad53 phosphorylation, which governs the DNA damage response pathway. Tor1 is localized to the cytoplasm, but enriched in the vacuole membrane. Phosphoproteomics and transcriptomics revealed that Tor1 regulates a variety of biological processes, including metabolic processes, cytoskeleton organization, ribosome biogenesis, and stress response. TOR inhibition by rapamycin caused actin depolarization in a Tor1-dependent manner. Finally, screening rapamycin-sensitive and -resistant kinase and transcription factor mutants revealed that the TOR pathway may crosstalk with a number of stress signaling pathways. In conclusion, our study demonstrates that a single Tor1 kinase plays pleiotropic roles in C. neoformans.

DOI: 10.1534/genetics.119.302191
PubMed: 31175227
PubMed Central: PMC6707454


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen
<i>Cryptococcus neoformans</i>
.</title>
<author>
<name sortKey="So, Yee Seul" sort="So, Yee Seul" uniqKey="So Y" first="Yee-Seul" last="So">Yee-Seul So</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Dong Gi" sort="Lee, Dong Gi" uniqKey="Lee D" first="Dong-Gi" last="Lee">Dong-Gi Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Idnurm, Alexander" sort="Idnurm, Alexander" uniqKey="Idnurm A" first="Alexander" last="Idnurm">Alexander Idnurm</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of BioSciences, The University of Melbourne, Victoria 3010</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ianiri, Giuseppe" sort="Ianiri, Giuseppe" uniqKey="Ianiri G" first="Giuseppe" last="Ianiri">Giuseppe Ianiri</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bahn, Yong Sun" sort="Bahn, Yong Sun" uniqKey="Bahn Y" first="Yong-Sun" last="Bahn">Yong-Sun Bahn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea ysbahn@yonsei.ac.kr.</nlm:affiliation>
<country wicri:rule="url">Corée du Sud</country>
<wicri:regionArea>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31175227</idno>
<idno type="pmid">31175227</idno>
<idno type="doi">10.1534/genetics.119.302191</idno>
<idno type="pmc">PMC6707454</idno>
<idno type="wicri:Area/Main/Corpus">000259</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000259</idno>
<idno type="wicri:Area/Main/Curation">000259</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000259</idno>
<idno type="wicri:Area/Main/Exploration">000259</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen
<i>Cryptococcus neoformans</i>
.</title>
<author>
<name sortKey="So, Yee Seul" sort="So, Yee Seul" uniqKey="So Y" first="Yee-Seul" last="So">Yee-Seul So</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Dong Gi" sort="Lee, Dong Gi" uniqKey="Lee D" first="Dong-Gi" last="Lee">Dong-Gi Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Idnurm, Alexander" sort="Idnurm, Alexander" uniqKey="Idnurm A" first="Alexander" last="Idnurm">Alexander Idnurm</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of BioSciences, The University of Melbourne, Victoria 3010</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ianiri, Giuseppe" sort="Ianiri, Giuseppe" uniqKey="Ianiri G" first="Giuseppe" last="Ianiri">Giuseppe Ianiri</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bahn, Yong Sun" sort="Bahn, Yong Sun" uniqKey="Bahn Y" first="Yong-Sun" last="Bahn">Yong-Sun Bahn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea ysbahn@yonsei.ac.kr.</nlm:affiliation>
<country wicri:rule="url">Corée du Sud</country>
<wicri:regionArea>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cryptococcus neoformans (genetics)</term>
<term>Cryptococcus neoformans (metabolism)</term>
<term>Cryptococcus neoformans (physiology)</term>
<term>Cytoskeleton (genetics)</term>
<term>Cytoskeleton (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Genetic Pleiotropy (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Ribosomes (genetics)</term>
<term>Ribosomes (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Spores, Fungal (genetics)</term>
<term>Spores, Fungal (metabolism)</term>
<term>Thermotolerance (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Cryptococcus neoformans (génétique)</term>
<term>Cryptococcus neoformans (métabolisme)</term>
<term>Cryptococcus neoformans (physiologie)</term>
<term>Cytosquelette (génétique)</term>
<term>Cytosquelette (métabolisme)</term>
<term>Pléiotropie (MeSH)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Ribosomes (génétique)</term>
<term>Ribosomes (métabolisme)</term>
<term>Spores fongiques (génétique)</term>
<term>Spores fongiques (métabolisme)</term>
<term>Thermotolérance (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cryptococcus neoformans</term>
<term>Cytoskeleton</term>
<term>Ribosomes</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Cryptococcus neoformans</term>
<term>Cytosquelette</term>
<term>Protéines fongiques</term>
<term>Ribosomes</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cryptococcus neoformans</term>
<term>Cytoskeleton</term>
<term>Fungal Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Ribosomes</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Cryptococcus neoformans</term>
<term>Cytosquelette</term>
<term>Protéines fongiques</term>
<term>Ribosomes</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cryptococcus neoformans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cryptococcus neoformans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Pleiotropy</term>
<term>Signal Transduction</term>
<term>Thermotolerance</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Pléiotropie</term>
<term>Thermotolérance</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (TOR) pathway is an evolutionarily conserved signal transduction system that governs a plethora of eukaryotic biological processes, but its role in
<i>Cryptococcus neoformans</i>
remains elusive. In this study, we investigated the TOR pathway by functionally characterizing two Tor-like kinases, Tor1 and Tlk1, in
<i>C. neoformans</i>
We successfully deleted
<i>TLK1</i>
, but not
<i>TOR1</i>
<i>TLK1</i>
deletion did not result in any evident
<i>in vitro</i>
phenotypes, suggesting that Tlk1 is dispensable for the growth of
<i>C. neoformans</i>
We demonstrated that Tor1, but not Tlk1, is essential and the target of rapamycin by constructing and analyzing conditionally regulated strains and sporulation analysis of heterozygous mutants in the diploid strain background. To further analyze the Tor1 function, we constructed constitutive
<i>TOR1</i>
overexpression strains. Tor1 negatively regulated thermotolerance and the DNA damage response, which are two important virulence factors of
<i>C. neoformans</i>
<i>TOR1</i>
overexpression reduced Mpk1 phosphorylation, which is required for cell wall integrity and thermoresistance, and Rad53 phosphorylation, which governs the DNA damage response pathway. Tor1 is localized to the cytoplasm, but enriched in the vacuole membrane. Phosphoproteomics and transcriptomics revealed that Tor1 regulates a variety of biological processes, including metabolic processes, cytoskeleton organization, ribosome biogenesis, and stress response. TOR inhibition by rapamycin caused actin depolarization in a Tor1-dependent manner. Finally, screening rapamycin-sensitive and -resistant kinase and transcription factor mutants revealed that the TOR pathway may crosstalk with a number of stress signaling pathways. In conclusion, our study demonstrates that a single Tor1 kinase plays pleiotropic roles in
<i>C. neoformans</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31175227</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>212</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen
<i>Cryptococcus neoformans</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1241-1258</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.119.302191</ELocationID>
<Abstract>
<AbstractText>The target of rapamycin (TOR) pathway is an evolutionarily conserved signal transduction system that governs a plethora of eukaryotic biological processes, but its role in
<i>Cryptococcus neoformans</i>
remains elusive. In this study, we investigated the TOR pathway by functionally characterizing two Tor-like kinases, Tor1 and Tlk1, in
<i>C. neoformans</i>
We successfully deleted
<i>TLK1</i>
, but not
<i>TOR1</i>
<i>TLK1</i>
deletion did not result in any evident
<i>in vitro</i>
phenotypes, suggesting that Tlk1 is dispensable for the growth of
<i>C. neoformans</i>
We demonstrated that Tor1, but not Tlk1, is essential and the target of rapamycin by constructing and analyzing conditionally regulated strains and sporulation analysis of heterozygous mutants in the diploid strain background. To further analyze the Tor1 function, we constructed constitutive
<i>TOR1</i>
overexpression strains. Tor1 negatively regulated thermotolerance and the DNA damage response, which are two important virulence factors of
<i>C. neoformans</i>
<i>TOR1</i>
overexpression reduced Mpk1 phosphorylation, which is required for cell wall integrity and thermoresistance, and Rad53 phosphorylation, which governs the DNA damage response pathway. Tor1 is localized to the cytoplasm, but enriched in the vacuole membrane. Phosphoproteomics and transcriptomics revealed that Tor1 regulates a variety of biological processes, including metabolic processes, cytoskeleton organization, ribosome biogenesis, and stress response. TOR inhibition by rapamycin caused actin depolarization in a Tor1-dependent manner. Finally, screening rapamycin-sensitive and -resistant kinase and transcription factor mutants revealed that the TOR pathway may crosstalk with a number of stress signaling pathways. In conclusion, our study demonstrates that a single Tor1 kinase plays pleiotropic roles in
<i>C. neoformans</i>
.</AbstractText>
<CopyrightInformation>Copyright © 2019 by the Genetics Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>So</LastName>
<ForeName>Yee-Seul</ForeName>
<Initials>YS</Initials>
<Identifier Source="ORCID">0000-0002-9922-3575</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Dong-Gi</ForeName>
<Initials>DG</Initials>
<Identifier Source="ORCID">0000-0002-6767-9543</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Idnurm</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-5995-7040</Identifier>
<AffiliationInfo>
<Affiliation>School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ianiri</LastName>
<ForeName>Giuseppe</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0002-3278-8678</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bahn</LastName>
<ForeName>Yong-Sun</ForeName>
<Initials>YS</Initials>
<Identifier Source="ORCID">0000-0001-9573-5752</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea ysbahn@yonsei.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI094364</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003455" MajorTopicYN="N">Cryptococcus neoformans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003599" MajorTopicYN="N">Cytoskeleton</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058685" MajorTopicYN="Y">Genetic Pleiotropy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071436" MajorTopicYN="Y">Thermotolerance</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DNA damage response</Keyword>
<Keyword MajorTopicYN="Y">nutrient sensing</Keyword>
<Keyword MajorTopicYN="Y">rapamycin</Keyword>
<Keyword MajorTopicYN="Y">thermotolerance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31175227</ArticleId>
<ArticleId IdType="pii">genetics.119.302191</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.119.302191</ArticleId>
<ArticleId IdType="pmc">PMC6707454</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1999 Jun;19(6):4101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1975 Oct;28(10):721-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1102508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12(12):4103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Aug;148(Pt 8):2607-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jun;48(5):1377-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12787363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2004 Nov;46(5):247-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15503029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2005 May;43 Suppl 1:S87-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Jul;17(7):3122-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16801547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2779-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Oct;27(20):7007-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1685-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18689526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Feb;46(2):126-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Aug;8(8):1197-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Dec 18;390(3):983-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19852932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Mar;47(3):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19944774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 May;185(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2010 May;76(3):662-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Apr;10(4):521-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21357479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2012 Feb 01;13(2):121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22240970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Apr;11(4):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22327008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;845:85-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Apr;84(1):130-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22339665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Mar 30;45(6):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22364741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Feb;24(3):385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23171549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2009 Sep;37(3):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23983528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Sep 26;51(6):829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013 Sep;11(9):e1001653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Feb;14(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24102693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2014 Jun;13(6):796-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24728196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 05;5:8767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25739925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Mar 31;6(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25827419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Apr 07;6:6757</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25849373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2015 Jul;17(7):930-942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26098573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Sep 28;7:12766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27677328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 Jan;205(1):201-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27866167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Nov 29;7(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Dec 28;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29283340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2019 Jan 2;10(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30602579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Mar;175(5):1405-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8444802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1997 Apr;7(2):170-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115420</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Corée du Sud</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Région capitale de Séoul</li>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
<li>Séoul</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<country name="Corée du Sud">
<region name="Région capitale de Séoul">
<name sortKey="So, Yee Seul" sort="So, Yee Seul" uniqKey="So Y" first="Yee-Seul" last="So">Yee-Seul So</name>
</region>
<name sortKey="Bahn, Yong Sun" sort="Bahn, Yong Sun" uniqKey="Bahn Y" first="Yong-Sun" last="Bahn">Yong-Sun Bahn</name>
<name sortKey="Lee, Dong Gi" sort="Lee, Dong Gi" uniqKey="Lee D" first="Dong-Gi" last="Lee">Dong-Gi Lee</name>
</country>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Idnurm, Alexander" sort="Idnurm, Alexander" uniqKey="Idnurm A" first="Alexander" last="Idnurm">Alexander Idnurm</name>
</region>
</country>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Ianiri, Giuseppe" sort="Ianiri, Giuseppe" uniqKey="Ianiri G" first="Giuseppe" last="Ianiri">Giuseppe Ianiri</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000200 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000200 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31175227
   |texte=   The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen Cryptococcus neoformans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31175227" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020